Sometimes it is useful to know you can multiply power series term by term, and without
having to worry about radius of convergence issues. This theorem makes it a breeze:

Theorem 5 (Multiplying power series): Let
r 0

/(z) = Zan(z—zo) :<a0+ ay(z=z0) +ay(z =) +... )

L 2 __é“_ by (z—z29) +by(z—2)° +.. )

in D(zy; R). Then the power series for f(z)g(z) also converges in D(zy; R) and is
given by
f(2)g(z) = aghy + (agh; + ayby) (z —z0) + (aghy + a1by + ayby) (2 —29)° + ...

f(2)g Z LZ ,] (2= 2)",

in other words, what you expect by formally multiplying and collecting all coefficients
for each (z—z,)".

proof: We know that power series are Tayloy series. Therefore,

i (n) ¢,
f(2)g(z) = 2, o) (=) (z—2)"

!
n=0 n:
will converge in D(zy; R). Compute the various derivatives, using the product rule for

first, second, ..., n'™ derivatives of product functions (via induction and the binomial
theorem).

(fg)(Zo) =ayby
(/&) (20) =/ (20)&(20) ./ (20)&" (20) = @109 + apb;
(f&)""(20)=/"(20)&(20) + 2/ (20)e '(Zo) +/(20)&"" (%0)
(fg)" (ZO) (2 ay)by+2a1by + ay(2by) =2!( ayby + a;b; + apby)
In general and using the product rule, (checked by induction, as in proof of binomial
theorem in first HW),

(/2)"(z0) = 2. (})/Y (20)8" 7 (20)
h. Jj=0
JZM n7/, (4! @) (n2j)0b, —; =7iz!'f;)ajbn_j °

Q.E.D.
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Math 4200 Quiz week 10 October 28, 2020

la) Find the first three non-zero terms of the Taylor expansion of

tan(z) = —zgll(é ))

at z,=0. Hint: Use the trick about multiplying Taylor series that we discuss at the end

of class. Since tan(z) the product of an odd function times an even function, it's an
odd function, so only the coefficients of the odd powers of z can be non-zero.
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1b) What is the radius of convergence of the series in 1a)? You can answer this
without actually knowing the Taylor series!!
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Math 4200

Friday October 30
3.2-3.3 isolated zeroes theorem, uniqueness of analytic extensions; begin 3.3 Laurent

series. We'll start today by quickly explaining the theorem about multiplying Taylor
series in Wednesday's notes, that you used succesfully on the quiz.

Announcements:
o
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Consequences of power series for analytic functions:

Theorem (Isolated zeroes theorem). Let
¢+ A < C be an open, connected set,

° f:A— C analytic,
° D(Zo, 7") gA,
¢ f(z) =0.

Then either f(z) = 0 in D(z,;r) or 3 0 > 0 such that f(z) # 0
VO<|z—z| <8
proof: f has convergent Taylor series

[e 8}

f(z)= Zoan(z—zo)” 2 —zp| <.
P
If all the @, =0 then /= 0 in D(zj; r). Otherwise let a) be the first non-zero
coefficient in the power series, so - ERY Xe
_ S . noo_ N N
CIE= 2azma)" 2 e ) ) s

and factor out the lowest power of (z —z,) that appears in this series:

where g(zy) =ay # 0 and g(z) is analytic and hence continous near z,. Thus there

exists 0 > 0 such that 2= 2| < 0 = g(z) # 0. This proves the claim.
QED.
4Gl =lagl # 0
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There is a surprising consequence of the isolated zeroes theorem:

Corollary (Unique extensions theorem) Let 4 & C be open and connected
f, g: A— C analytic. Supposed there exists

eeted,

S
”l {Zk} A, {Zk}—>zo €A, z; # zy, k€ N.
) f(z)=g(z) Yk (abso £lo)= 312 6y mkm;)z)_
Then f(z) =g(z) V z €A

prooj- f—=g A= U isanalyticand (f—g)(z)=0 V k. Thusz, isazeroof f—g
which is not isolated. Thus by the isolated zeroes theorem
- (f—8)(z2) =0, VzeD(z;r) 4. o
¢ (This 1s already surprising.) Now, consider

o B:={zed|(f—g)"(z)=0Vn=0,1,2,.}.
We have D(zy; ) & B since (f—g)(z) =0 in D(z;r).

B is closed in 4 because if {wk} S B, {w;}—=w & 4 then

0=(f=2)" (m) = (/=) ") (w) ¥ n.

B 1s open in A4 because if z; € B the Taylor series for f at z; is the zero function
so for any D(z;; r) & 4 we also have D(z;; r) < B.

Thus, since A4 is connected, B=A.



Example (also see one of your homework problems). It is not clear without a lot of
work why the Riemann Zeta function

C(s)= > — Res 51

n=1n
can be extended as an analytic function (with different formulas), beyond the plane
Re(s) > 1 on which the series converges. But in fact, it can be extended as an analytic

function on C \ {1}. The Unique extensions theorem says there's only one possible
extension.




3.3 Laurent series.  If f(z) is an analytic function on a punctured disk or on an
annulus centered at z,, then f can be expressed as a power series expansion using non-

negative and negative powers of (z —zj). These series are called Laurent series

Laurent Series Theorem For 0 < Ry < R, let

A={Z€ (D|R1 < |Z—ZO| <R2}
be an open annulus (or punctured disk in case R; =0). Then (1) and (2) below are
equivalent, and the uniqueness of Laurent coefficients (3) also holds:

(1) f:A—C is analytic.
(2) f(z) has a power series expansion using non-negative and negative powers of

(Z — ZO) : . .
Z)ZZan(z—zo "4 z
n=0 =1 (z— ZO)
= 8 (z) + Sz( z).
Here S)(z) converges for |z — zy| < R, and uniformly absolutely for s

|z —zo| <7, <R,. And S,(z) converges for |z — zy| > Ry, and uniformly*for |z — z|

(3) The Laurent coefficients a; , k € Z are uniquely determined by f. Specifically, if
Y is any p.w. C' contour in 4, with ](y, ZO) =1, e.g. any circle of radius », with R,
<r <R,, then

. 1J(f(€) it

ar= . k+1
2T ¥ C’ — ZO)
In particular the contour integral of f itself has value

{ Jf(@)dc=2nia_1.
Y

For this reason, the coefficient a_; of

in the Laurent series, is called the
z—z
0

residue of f at z;. (Because it's the only part of the Laurent series you need to know in

order to compute the contour integral of f.)

Note: (2) = (1) of the theorem is immediate, since uniform limits of analytic functions
are analytic. We'll prove (2) = (3) in today's notes, and then do (1) = (2) on
Monday. It will rely on geometric series magic, as did our theorem about Taylor series
for analytic functions in disks.



®
Examples: -2 1

1) Consider

1 1 1 1
&= Tz 2) _3(2—1 z+2
Find the following series expansions for z, = 0:

: A |

@ Taylor series for |z <1 - v £ = "5 (’ ‘_}) - {;} ‘5_—\—_—(_—%4

b) Laurent series for 1 < |z < 2.+ -, & o 7

c) Laurent series for |z > 2. 3 Z_% - t Q’_'l e
h=b b 2

@Use residues from the Laurent series to compute f f(z) dz for the t%r-e)e index-one R°72
’Y .
. . .1 3 : . :
circles centered at the origin, of radii 5y 3. Notice that this is reproducing results

you already know how to find using the Cauchy integral formula and other means.
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1

2a) What is the Laurent series for ze in C \ {0}?

2b) What is the value of
1

Jze? dz
Y
if y is a closed contour in C \ {0}, with 7(7y; 0) =1?



proof of (2) = (3) in the Laurent series theorem:

(2) f(z) has a power series expansion using non-negative and negative powers of
(z—2):

f(z) anoan(z—zo)" + mzla_m (z—zo)_m

Here §)(z) converges for |z — zy| < R, and uniformly absolutely for
|z = 29| < <R,. And S,(z) converges for |z —zy| > R, and uniformly for |z — z|

(3) The Laurent coefficients a, , k € Z are uniquely determined by f. Specifically, if

Yy is any p.w. C' contour in 4, with I ( v, zo> =1, e.g. any circle of radius r, with R
<r< R2, then

2;,-J AL I—e
v (§-7)
In particular the contour integral of f itself has value
Jf(@)dc= 2mia .
Y
proof: We'll write £(C) =S,({) +S,(L) and just compute the contour integrals

above. We'll use the uniform convergence of the series S;((), S,(£) on vy to
interchange the integrals with the summations:

=



Math 4200-001
Week 10-11 concepts and homework
3.2-3.3
Due Friday November 6 at start of class.

3.3 1lab, 4,6, 8, 13,15, 17, 18, 19, 20

w10.1a) Use the definitions of even and odd functions to show that if f is analytic in a
neighborhood of the origin and if f is even, then its Taylor series at z, =0 only contains

even powers of z; and if f is odd the Taylor series only contains odd powers.
w10.1b) Are the same facts true for the Laurent series based at z,=0, for even and

odd analytic functions defined in annuli concentric to the origin?

U\.iv:i\v\l.hj-ss 7\7 ax lb“ys‘ms, 1 1
%w10.2) Let f be an entire function. Suppose f ( ;) = — for all positive integers n.
n

Is it possible for f(-1) to equal -1? Explain.
w10.3) Use power series or L'Hopital's rule to find
. cos(z) —1
lim —
z—>0 zsin(z)
w10.4) Continuing the text problem 3.3.4, find the Laurent series for
1

z(z—1)(z—2)

valid for |z| > 2.

w10.4) Which of these functions has a removable singularity at z=0?

cos(z) — 1
a) sin(z) sin(2) (see wl0.2)
b) cos(z) — 1 .

z



