
Sometimes it is useful to know you can multiply power series term by term, and without
having to worry about radius of convergence issues.  This theorem makes it a breeze:

Theorem 5  (Multiplying power series):  Let 

f z =
n = 0

an z z0
n  = a0  a1 z z0 a2 z z0

2 ...

g z =
n = 0

bn z z0
n == b0  b1 z z0 b2 z z0

2 ...

in D z0; R .  Then the power series for f z g z  also converges in D z0; R  and is 
given by
f z g z = a0b0 a0b1 a1b0 z z0 a0b2  a1b1 a2b0 z z0

2  ....

 f z g z =
n = 0

 
j = 0

n

 aj bn j z z0
n ,

in other words, what you expect by formally multiplying and collecting all coefficients 
for each z z0

n .

proof:  We know that power series are Taylor series.  Therefore,  

f z g z =
n = 0

f g n z0
n!  z z0

n

will converge in D z0; R .    Compute the various derivatives, using the product rule for
first, second, ..., nth  derivatives of product functions (via induction and the binomial 
theorem).

f g z0 = a0b0
f g z0 = f z0 g z0 f z0 g z0 = a1b0 a0b1  

f g z0 = f z0 g z0 2 f z0 g z0 f z0 g z0
 f g z0 = 2 a2 b0 2 a1b1  a0 2 b2 = 2!  a2b0 a1b1 a0b2)

In general and using the product rule, (checked by induction, as in proof of binomial 
theorem in first HW),

f g n z0 = 
j = 0

n

j
n f j z0 g

n j z0

 =
j = 0

n
n!

j! n j !   j! aj  n j ! bn j = n!
j = 0

n

 aj bn j

Q.E.D.
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Name: _______________________________________

Math 4200 Quiz week 10        October 28, 2020

1a)  Find the first three non-zero terms of the Taylor expansion of

tan z = sin z
cos z

at z0 = 0.   Hint:  Use the trick about multiplying Taylor series that we discuss at the end
of class.  Since tan z  the product of  an odd function times an even function, it's an 
odd function, so only the coefficients of the odd powers of z can be non-zero.

(8 points)

1b)  What is the radius of convergence of the series in 1a)?    You can answer this 
without actually knowing the Taylor series!!

(2 points)
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Math 4200
Friday October 30
3.2-3.3 isolated zeroes theorem, uniqueness of analytic extensions;  begin 3.3 Laurent 
series.  We'll start today by quickly explaining the theorem about multiplying Taylor 
series in Wednesday's notes, that you used succesfully on the quiz.

Announcements:   

Hu
2nd midterm in 2 weeks
projects



Consequences of power series for analytic functions:

Theorem (Isolated zeroes theorem).  Let 
A  be an open, connected set, 

f : A  analytic,
D z0; r A,

f z0 = 0.
Then either f z 0 in D z0; r  or 0 such that f z 0  

0 z z0 .
proof:  f  has convergent Taylor series

f z =
n = 0

an z z0
n              z z0 r.

If all the an = 0 then f 0 in D z0; r .  Otherwise let aN  be the first non-zero 
coefficient in the power series, so

f z =
n = N

an z z0
n

and factor out the lowest power of z z0  that appears in this series:

f z  = z z0
N aN

n = N 1
an z z0

n N

f z  = z z0
Ng z

where g z0 = aN 0 and g z  is analytic and hence continous near z0 .  Thus there 
exists 0 such that z z0 g z 0.  This proves the claim.

QED.
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There is a surprising consequence of the isolated zeroes theorem:  

Corollary  (Unique extensions theorem) Let  A  be open and connected; 
f, g : A  analytic.  Supposed there exists

A  be open and connected,
f, g : A  analytic;

zk A, zk z0 A, zk z0, k .
f zk = g zk  k

Then f z = g z   z A .
proof: f g : A  is analytic and f g zk = 0  k.   Thus z0  is a zero of f g 
which is not isolated.  Thus by the isolated zeroes theorem, 

f g z 0,  z D z0; r A .
(This is already surprising.)  Now, consider

B z A  f g n z = 0 n = 0, 1, 2,... .
We have D z0; r B    since f g z 0 in D z0; r .

    B is closed in A  because if wk B , wk w A  then  
0 = f g n wk f g n w  n.

    B  is open in A  because if z1 B  the Taylor series for f  at z1  is the zero function,
so for any D z1; r A  we also have D z1; r B .

Thus, since A  is connected, B = A .
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Example  (also see one of your homework problems).  It is not clear without a lot of 
work why the Riemann Zeta function

s =
n = 1

1
ns

can be extended as an analytic function (with different formulas), beyond the plane 
Re s 1 on which the series converges.  But in fact, it can be extended as an analytic 
function on 1 .  The Unique extensions theorem says there's only one possible 
extension.

Res I



3.3 Laurent series.     If f z  is an analytic function on a punctured disk or on an 
annulus centered at z0 , then f  can be expressed as a power series expansion using  non-
negative and negative powers of z z0 .   These series are called Laurent series

Laurent Series Theorem  For 0 R1 R2  let
A = z   R1 z z0 R2

be an open annulus (or punctured disk in case R1 = 0).  Then (1) and (2) below are 
equivalent, and the uniqueness of Laurent coefficients (3) also holds:

(1)   f : A  is analytic.
(2) f z  has a power series expansion using non-negative and negative powers of 

z z0 :

f z =
n = 0

an z z0
n    

m = 1

a m

z z0
m .

 S1 z S2 z .
Here S1 z  converges for z z0 R2  and uniformly absolutely for 
z z0 r2 R2 .  And S2 z  converges for z z0 R1 , and uniformly for z z0

r1 R1.

(3)  The Laurent coefficients ak , k  are uniquely determined by f .  Specifically, if 
 is any p.w. C1  contour in A , with I , z0 = 1, e.g. any circle of radius r, with  R1

r R2, then

ak = 1
2  i

 
f

z0
k 1 d

In particular the contour integral of f  itself has value
 f d  = 2  i a 1 .

For this reason, the coefficient a 1  of 1
z z0

 in the Laurent series, is called the

residue of f  at z0 .  (Because it's the only part of the Laurent series you need to know in 
order to compute the contour integral of f .)

Note:  (2) (1) of the theorem is immediate, since uniform limits of analytic functions
are analytic.  We'll prove (2) (3) in today's notes, and then do (1) (2) on 
Monday.  It will rely on geometric series magic, as did our theorem about Taylor series 
for analytic functions in disks.
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Examples:

1)  Consider 

f z = 1
z 1 z 2 = 1

3
1

z 1
1

z 2 .

Find the following series expansions for z0 = 0:
a)  Taylor series for z 1
b)  Laurent series for 1 z 2.
c)   Laurent series for z 2.

Use residues from the Laurent series to compute  f z  dz  for the three index-one 

circles centered at the origin, of radii 1
2 , 3

2 , 3.   Notice that this is reproducing results 

you already know how to find using the Cauchy integral formula and other means.
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2a)  What is the Laurent series for z e
1
z  in 0 ?  

2b)  What is the value of 

 z e
1
z  dz 

if  is a closed contour in 0 , with I ; 0 = 1?  

continue on Monday



proof of (2) (3) in the Laurent series theorem:

(2) f z  has a power series expansion using non-negative and negative powers of 
z z0 :

f z =
n = 0

an z z0
n    

m = 1
a m z z0

m

 S1 z S2 z .
Here S1 z  converges for z z0 R2  and uniformly absolutely for 
z z0 r2 R2 .  And S2 z  converges for z z0 R1 , and uniformly for z z0

r1 R1.

(3)  The Laurent coefficients ak , k  are uniquely determined by f .  Specifically, if 

 is any p.w. C1  contour in A , with I , z0 = 1, e.g. any circle of radius r, with  R1
r R2, then

ak = 1
2  i

 f

z0
k 1 d

In particular the contour integral of f  itself has value
 f d  = 2  i a 1 .

proof:  We'll write f = S1 S2  and just compute the contour integrals 
above.  We'll use the uniform convergence of the series S1 , S2  on  to 
interchange the integrals with the summations:



Math 4200-001
Week 10-11 concepts and homework

3.2-3.3
Due Friday November 6 at start of class.

3.3   1ab, 4, 6, 8, 13, 15, 17, 18, 19, 20

w10.1a)  Use the definitions of even and odd functions to show that if f  is analytic in a 
neighborhood of the origin and if f  is even, then its Taylor series at z0 = 0 only contains
even powers of z;  and if f  is odd the Taylor series only contains odd powers.
w10.1b)  Are the same facts true for the Laurent series based at z0 = 0,  for even and 
odd analytic functions defined in annuli concentric to the origin?

w10.2)  Let f  be an entire function.  Suppose f 1
n = 1

n2  for all positive integers n. 

Is it possible for f 1  to equal 1?  Explain.
w10.3)  Use power series or L'Hopital's rule to find

lim
z 0

cos z 1
z sin z

w10.4)  Continuing the text problem 3.3.4, find the Laurent series for 
1

z z 1 z 2
valid for z 2.

w10.4)  Which of these functions has a removable singularity at z = 0?

a)   cos z 1
z sin z   (see w10.2)

b)   cos z 1
z3 .

uniquenessofextensions


